Overview
XAI Balance
XAI Value
$0.00More Info
Private Name Tags
ContractCreator
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
Rewards
Compiler Version
v0.8.27+commit.40a35a09
Optimization Enabled:
No with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.9; import "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol"; contract Rewards is Initializable, AccessControlUpgradeable, PausableUpgradeable { //definitions struct Permit { address recipient; //address of user recieving the rewards address tokenAddress; //contract address of token to award (zero address is native token) uint256 amount; //quantity of tokens to transfer address rewardsAddress; //address of rewards contract uint256 expiration; //expiration timestamp of permit } //constants bytes32 public constant ADMIN_ROLE = keccak256("ADMIN_ROLE"); //0xa49807205ce4d355092ef5a8a18f56e8913cf4a201fbe287825b095693c21775 bytes32 public constant PERMIT_SIGNER_ROLE = keccak256("PERMIT_SIGNER_ROLE"); //0x24a3818a7acb4b0eabcb40e14b621200302d36230167d1d515c4059076de54ec bytes32 public constant FULFILLMENT_ADMIN_ROLE = keccak256("FULFILLMENT_ADMIN_ROLE"); //0x042f7f2d51a65221f2b78abd38eab9b584f9316e5208d5d8692a81b3af07af73 //state mapping(bytes32 => bool) public claimedPermits; //permitHash => isClaimed mapping(uint256 => address) public fulfillments; //fulfillmentId => recipient /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[500] private __gap; //events event PermitBlocked(bytes32 permitHash, address indexed blockedBy); event RewardsClaimed( uint256 amount, address indexed tokenAddress, address indexed recipient, bytes32 permitHash, address indexed claimedBy ); event Fulfillment( uint256 indexed fulfillmentId, address indexed recipient, address indexed currency, uint256 amount ); /** * @dev Rewards initializer. Sets up AccessControl roles. * @param _admin Address that will initially hold the ADMIN_ROLE. */ function initialize(address _admin, address fulfillmentAdmin) public initializer { require(_admin != address(0), "Invalid admin"); require(fulfillmentAdmin != address(0), "Invalid fulfillmentAdmin"); __AccessControl_init(); __Pausable_init(); _grantRole(ADMIN_ROLE, _admin); _setRoleAdmin(PERMIT_SIGNER_ROLE, ADMIN_ROLE); _setRoleAdmin(FULFILLMENT_ADMIN_ROLE, ADMIN_ROLE); _grantRole(FULFILLMENT_ADMIN_ROLE, fulfillmentAdmin); } /** * @dev Toggles contract paused state on/off. Requires caller to have ADMIN_ROLE. */ function togglePaused() public onlyRole(ADMIN_ROLE) { paused() ? _unpause() : _pause(); } /** * @dev Blocks an unclaimed permit from use by marking as claimed. Requires * caller to have ADMIN_ROLE. * @param permitHash Hash of permit to block. */ function blockPermit(bytes32 permitHash) public onlyRole(ADMIN_ROLE) { claimedPermits[permitHash] = true; emit PermitBlocked(permitHash, msg.sender); } /** * @dev Claim earned rewards by submitting a signed permit. */ function claimRewards(Permit calldata permit, bytes calldata signature) public whenNotPaused { //validate require(permit.recipient != address(0x0), "invalid recipient"); require(permit.amount > 0, "invalid amount"); require(permit.rewardsAddress == address(this), "invalid rewards address"); require(block.timestamp <= permit.expiration, "permit has expired"); //calculate prefixed permit hash bytes32 permitHash = calculatePrefixedPermitHash(permit); require(!claimedPermits[permitHash], "permit already claimed"); //update state claimedPermits[permitHash] = true; //validate signature address recoveredSigner = ECDSA.recover(permitHash, signature); require(hasRole(PERMIT_SIGNER_ROLE, recoveredSigner), "invalid signature"); //transfer tokens to recipient if (permit.tokenAddress == address(0x0)) { require(address(this).balance >= permit.amount, "insufficient balance for native withdrawal"); //transfer native tokens (bool success, ) = payable(permit.recipient).call{value: permit.amount}(""); require(success, "native token transfer failed"); } else { require(IERC20(permit.tokenAddress).balanceOf(address(this)) >= permit.amount, "insufficient balance for erc20 withdrawal"); //transfer ERC20 tokens bool success = IERC20(permit.tokenAddress).transfer(permit.recipient, permit.amount); require(success, "erc20 token transfer failed"); } //emit event emit RewardsClaimed(permit.amount, permit.tokenAddress, permit.recipient, permitHash, msg.sender); } /** * @dev Calculates the keccak256 hash of the Permit struct data. * @param permit Permit struct to hash. * @return bytes32 Keccak256 hash of Permit struct. */ function calculatePermitHash(Permit memory permit) public pure returns (bytes32) { return keccak256( abi.encode( permit.recipient, permit.tokenAddress, permit.amount, permit.rewardsAddress, permit.expiration ) ); } /** * @dev Calculates the prefixed message hash for a given permit. * @param permit Permit struct to hash with prefix. * @return bytes32 Keccak256 hash of prefixed permit hash. */ function calculatePrefixedPermitHash(Permit memory permit) public pure returns (bytes32) { bytes32 messageHash = calculatePermitHash(permit); return MessageHashUtils.toEthSignedMessageHash(messageHash); } /** * @dev Process a fulfillment and withdraw currency to the recipient * Require caller to have FULFILLMENT_ADMIN_ROLE. * @param fulfillmentId The centralized fulfillment id * @param recipient The funds recipient address * @param currency The withdraw currency, address(0) for XAI native coin * @param amount The withdraw amount in currency base unit */ function processFulfillment(uint256 fulfillmentId, address recipient, address currency, uint256 amount) public onlyRole(FULFILLMENT_ADMIN_ROLE) { require(recipient != address(0), "Invalid recipient"); require(fulfillments[fulfillmentId] == address(0), "Already processed"); fulfillments[fulfillmentId] = recipient; if (currency == address(0x0)) { require(address(this).balance >= amount, "insufficient balance for native withdrawal"); //transfer native tokens (bool success, ) = payable(recipient).call{value: amount}(""); require(success, "native token transfer failed"); } else { require(IERC20(currency).balanceOf(address(this)) >= amount, "insufficient balance for erc20 withdrawal"); //transfer ERC20 tokens bool success = IERC20(currency).transfer(recipient, amount); require(success, "erc20 token transfer failed"); } emit Fulfillment(fulfillmentId, recipient, currency, amount); } receive() external payable {} fallback() external payable {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol) pragma solidity ^0.8.20; import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol"; import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol"; import {ERC165Upgradeable} from "../utils/introspection/ERC165Upgradeable.sol"; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. This is a lightweight version that doesn't allow enumerating role * members except through off-chain means by accessing the contract event logs. Some * applications may benefit from on-chain enumerability, for those cases see * {AccessControlEnumerable}. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ```solidity * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ```solidity * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules} * to enforce additional security measures for this role. */ abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControl, ERC165Upgradeable { struct RoleData { mapping(address account => bool) hasRole; bytes32 adminRole; } bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /// @custom:storage-location erc7201:openzeppelin.storage.AccessControl struct AccessControlStorage { mapping(bytes32 role => RoleData) _roles; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessControl")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant AccessControlStorageLocation = 0x02dd7bc7dec4dceedda775e58dd541e08a116c6c53815c0bd028192f7b626800; function _getAccessControlStorage() private pure returns (AccessControlStorage storage $) { assembly { $.slot := AccessControlStorageLocation } } /** * @dev Modifier that checks that an account has a specific role. Reverts * with an {AccessControlUnauthorizedAccount} error including the required role. */ modifier onlyRole(bytes32 role) { _checkRole(role); _; } function __AccessControl_init() internal onlyInitializing { } function __AccessControl_init_unchained() internal onlyInitializing { } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId); } /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view virtual returns (bool) { AccessControlStorage storage $ = _getAccessControlStorage(); return $._roles[role].hasRole[account]; } /** * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()` * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier. */ function _checkRole(bytes32 role) internal view virtual { _checkRole(role, _msgSender()); } /** * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account` * is missing `role`. */ function _checkRole(bytes32 role, address account) internal view virtual { if (!hasRole(role, account)) { revert AccessControlUnauthorizedAccount(account, role); } } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) { AccessControlStorage storage $ = _getAccessControlStorage(); return $._roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleGranted} event. */ function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) { _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleRevoked} event. */ function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) { _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been revoked `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `callerConfirmation`. * * May emit a {RoleRevoked} event. */ function renounceRole(bytes32 role, address callerConfirmation) public virtual { if (callerConfirmation != _msgSender()) { revert AccessControlBadConfirmation(); } _revokeRole(role, callerConfirmation); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { AccessControlStorage storage $ = _getAccessControlStorage(); bytes32 previousAdminRole = getRoleAdmin(role); $._roles[role].adminRole = adminRole; emit RoleAdminChanged(role, previousAdminRole, adminRole); } /** * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted. * * Internal function without access restriction. * * May emit a {RoleGranted} event. */ function _grantRole(bytes32 role, address account) internal virtual returns (bool) { AccessControlStorage storage $ = _getAccessControlStorage(); if (!hasRole(role, account)) { $._roles[role].hasRole[account] = true; emit RoleGranted(role, account, _msgSender()); return true; } else { return false; } } /** * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked. * * Internal function without access restriction. * * May emit a {RoleRevoked} event. */ function _revokeRole(bytes32 role, address account) internal virtual returns (bool) { AccessControlStorage storage $ = _getAccessControlStorage(); if (hasRole(role, account)) { $._roles[role].hasRole[account] = false; emit RoleRevoked(role, account, _msgSender()); return true; } else { return false; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; import {Initializable} from "../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` */ abstract contract ERC165Upgradeable is Initializable, IERC165 { function __ERC165_init() internal onlyInitializing { } function __ERC165_init_unchained() internal onlyInitializing { } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol) pragma solidity ^0.8.20; import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol"; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /// @custom:storage-location erc7201:openzeppelin.storage.Pausable struct PausableStorage { bool _paused; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Pausable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant PausableStorageLocation = 0xcd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300; function _getPausableStorage() private pure returns (PausableStorage storage $) { assembly { $.slot := PausableStorageLocation } } /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); /** * @dev The operation failed because the contract is paused. */ error EnforcedPause(); /** * @dev The operation failed because the contract is not paused. */ error ExpectedPause(); /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal onlyInitializing { __Pausable_init_unchained(); } function __Pausable_init_unchained() internal onlyInitializing { PausableStorage storage $ = _getPausableStorage(); $._paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { PausableStorage storage $ = _getPausableStorage(); return $._paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { if (paused()) { revert EnforcedPause(); } } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { if (!paused()) { revert ExpectedPause(); } } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { PausableStorage storage $ = _getPausableStorage(); $._paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { PausableStorage storage $ = _getPausableStorage(); $._paused = false; emit Unpaused(_msgSender()); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (access/IAccessControl.sol) pragma solidity ^0.8.20; /** * @dev External interface of AccessControl declared to support ERC-165 detection. */ interface IAccessControl { /** * @dev The `account` is missing a role. */ error AccessControlUnauthorizedAccount(address account, bytes32 neededRole); /** * @dev The caller of a function is not the expected one. * * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}. */ error AccessControlBadConfirmation(); /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role). * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) external view returns (bool); /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {AccessControl-_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) external view returns (bytes32); /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) external; /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) external; /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `callerConfirmation`. */ function renounceRole(bytes32 role, address callerConfirmation) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover( bytes32 hash, bytes memory signature ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly ("memory-safe") { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures] */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SafeCast} from "./math/SafeCast.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { using SafeCast for *; bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev The string being parsed contains characters that are not in scope of the given base. */ error StringsInvalidChar(); /** * @dev The string being parsed is not a properly formatted address. */ error StringsInvalidAddressFormat(); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } /** * @dev Parse a decimal string and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input) internal pure returns (uint256) { return parseUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); uint256 result = 0; for (uint256 i = begin; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 9) return (false, 0); result *= 10; result += chr; } return (true, result); } /** * @dev Parse a decimal string and returns the value as a `int256`. * * Requirements: * - The string must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input) internal pure returns (int256) { return parseInt(input, 0, bytes(input).length); } /** * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) { (bool success, int256 value) = tryParseInt(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if * the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt(string memory input) internal pure returns (bool success, int256 value) { return _tryParseIntUncheckedBounds(input, 0, bytes(input).length); } uint256 private constant ABS_MIN_INT256 = 2 ** 255; /** * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character or if the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, int256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseIntUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseIntUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, int256 value) { bytes memory buffer = bytes(input); // Check presence of a negative sign. bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty bool positiveSign = sign == bytes1("+"); bool negativeSign = sign == bytes1("-"); uint256 offset = (positiveSign || negativeSign).toUint(); (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end); if (absSuccess && absValue < ABS_MIN_INT256) { return (true, negativeSign ? -int256(absValue) : int256(absValue)); } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) { return (true, type(int256).min); } else return (false, 0); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input) internal pure returns (uint256) { return parseHexUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseHexUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an * invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseHexUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseHexUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); // skip 0x prefix if present bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 offset = hasPrefix.toUint() * 2; uint256 result = 0; for (uint256 i = begin + offset; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 15) return (false, 0); result *= 16; unchecked { // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check). // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked. result += chr; } } return (true, result); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input) internal pure returns (address) { return parseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) { (bool success, address value) = tryParseAddress(input, begin, end); if (!success) revert StringsInvalidAddressFormat(); return value; } /** * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress(string memory input) internal pure returns (bool success, address value) { return tryParseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, address value) { if (end > bytes(input).length || begin > end) return (false, address(0)); bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 expectedLength = 40 + hasPrefix.toUint() * 2; // check that input is the correct length if (end - begin == expectedLength) { // length guarantees that this does not overflow, and value is at most type(uint160).max (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end); return (s, address(uint160(v))); } else { return (false, address(0)); } } function _tryParseChr(bytes1 chr) private pure returns (uint8) { uint8 value = uint8(chr); // Try to parse `chr`: // - Case 1: [0-9] // - Case 2: [a-f] // - Case 3: [A-F] // - otherwise not supported unchecked { if (value > 47 && value < 58) value -= 48; else if (value > 96 && value < 103) value -= 87; else if (value > 64 && value < 71) value -= 55; else return type(uint8).max; } return value; } /** * @dev Reads a bytes32 from a bytes array without bounds checking. * * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the * assembly block as such would prevent some optimizations. */ function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) { // This is not memory safe in the general case, but all calls to this private function are within bounds. assembly ("memory-safe") { value := mload(add(buffer, add(0x20, offset))) } } }
{ "evmVersion": "paris", "optimizer": { "enabled": false, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"fulfillmentId","type":"uint256"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":true,"internalType":"address","name":"currency","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Fulfillment","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"permitHash","type":"bytes32"},{"indexed":true,"internalType":"address","name":"blockedBy","type":"address"}],"name":"PermitBlocked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":true,"internalType":"address","name":"tokenAddress","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"bytes32","name":"permitHash","type":"bytes32"},{"indexed":true,"internalType":"address","name":"claimedBy","type":"address"}],"name":"RewardsClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FULFILLMENT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PERMIT_SIGNER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"permitHash","type":"bytes32"}],"name":"blockPermit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"rewardsAddress","type":"address"},{"internalType":"uint256","name":"expiration","type":"uint256"}],"internalType":"struct Rewards.Permit","name":"permit","type":"tuple"}],"name":"calculatePermitHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"rewardsAddress","type":"address"},{"internalType":"uint256","name":"expiration","type":"uint256"}],"internalType":"struct Rewards.Permit","name":"permit","type":"tuple"}],"name":"calculatePrefixedPermitHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"rewardsAddress","type":"address"},{"internalType":"uint256","name":"expiration","type":"uint256"}],"internalType":"struct Rewards.Permit","name":"permit","type":"tuple"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"claimRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"claimedPermits","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"fulfillments","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_admin","type":"address"},{"internalType":"address","name":"fulfillmentAdmin","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"fulfillmentId","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"currency","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"processFulfillment","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"togglePaused","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
6080604052348015600f57600080fd5b50612f948061001f6000396000f3fe6080604052600436106101235760003560e01c806363eda212116100a0578063cd6487a211610064578063cd6487a21461040d578063cd6cb51d14610438578063d547741f14610461578063e1f4a17d1461048a578063f8109888146104b557610124565b806363eda2121461030057806375b238fc1461033d57806391d1485414610368578063a217fddf146103a5578063a446a62b146103d057610124565b806336566f06116100e757806336566f061461022f57806336568abe14610246578063485cc9551461026f5780635a08cae5146102985780635c975abb146102d557610124565b806301ffc9a7146101265780630640961c146101635780630774614b146101a0578063248a9ca3146101c95780632f2ff15d1461020657610124565b5b005b34801561013257600080fd5b5061014d6004803603810190610148919061211a565b6104de565b60405161015a9190612162565b60405180910390f35b34801561016f57600080fd5b5061018a6004803603810190610185919061232e565b610558565b6040516101979190612374565b60405180910390f35b3480156101ac57600080fd5b506101c760048036038101906101c291906123bb565b6105a4565b005b3480156101d557600080fd5b506101f060048036038101906101eb91906123bb565b61064b565b6040516101fd9190612374565b60405180910390f35b34801561021257600080fd5b5061022d600480360381019061022891906123e8565b610679565b005b34801561023b57600080fd5b5061024461069b565b005b34801561025257600080fd5b5061026d600480360381019061026891906123e8565b6106ea565b005b34801561027b57600080fd5b5061029660048036038101906102919190612428565b610765565b005b3480156102a457600080fd5b506102bf60048036038101906102ba9190612468565b610ac4565b6040516102cc91906124a4565b60405180910390f35b3480156102e157600080fd5b506102ea610af7565b6040516102f79190612162565b60405180910390f35b34801561030c57600080fd5b506103276004803603810190610322919061232e565b610b1c565b6040516103349190612374565b60405180910390f35b34801561034957600080fd5b50610352610b3b565b60405161035f9190612374565b60405180910390f35b34801561037457600080fd5b5061038f600480360381019061038a91906123e8565b610b5f565b60405161039c9190612162565b60405180910390f35b3480156103b157600080fd5b506103ba610bd8565b6040516103c79190612374565b60405180910390f35b3480156103dc57600080fd5b506103f760048036038101906103f291906123bb565b610bdf565b6040516104049190612162565b60405180910390f35b34801561041957600080fd5b50610422610bff565b60405161042f9190612374565b60405180910390f35b34801561044457600080fd5b5061045f600480360381019061045a91906124bf565b610c23565b005b34801561046d57600080fd5b50610488600480360381019061048391906123e8565b6110c6565b005b34801561049657600080fd5b5061049f6110e8565b6040516104ac9190612374565b60405180910390f35b3480156104c157600080fd5b506104dc60048036038101906104d791906125af565b61110c565b005b60007f7965db0b000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff191614806105515750610550826117c6565b5b9050919050565b60008160000151826020015183604001518460600151856080015160405160200161058795949392919061261e565b604051602081830303815290604052805190602001209050919050565b7fa49807205ce4d355092ef5a8a18f56e8913cf4a201fbe287825b095693c217756105ce81611830565b600160008084815260200190815260200160002060006101000a81548160ff0219169083151502179055503373ffffffffffffffffffffffffffffffffffffffff167fb9754bb28c92fc3e1623ffea877b1f1ca6ca1fd490ecc6160ba73aee9fca1a368360405161063f9190612374565b60405180910390a25050565b600080610656611844565b905080600001600084815260200190815260200160002060010154915050919050565b6106828261064b565b61068b81611830565b610695838361186c565b50505050565b7fa49807205ce4d355092ef5a8a18f56e8913cf4a201fbe287825b095693c217756106c581611830565b6106cd610af7565b6106de576106d961196d565b6106e7565b6106e66119df565b5b50565b6106f2611a51565b73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614610756576040517f6697b23200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6107608282611a59565b505050565b600061076f611b5b565b905060008160000160089054906101000a900460ff1615905060008260000160009054906101000a900467ffffffffffffffff1690506000808267ffffffffffffffff161480156107bd5750825b9050600060018367ffffffffffffffff161480156107f2575060003073ffffffffffffffffffffffffffffffffffffffff163b145b905081158015610800575080155b15610837576040517ff92ee8a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60018560000160006101000a81548167ffffffffffffffff021916908367ffffffffffffffff16021790555083156108875760018560000160086101000a81548160ff0219169083151502179055505b600073ffffffffffffffffffffffffffffffffffffffff168773ffffffffffffffffffffffffffffffffffffffff16036108f6576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016108ed906126ce565b60405180910390fd5b600073ffffffffffffffffffffffffffffffffffffffff168673ffffffffffffffffffffffffffffffffffffffff1603610965576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161095c9061273a565b60405180910390fd5b61096d611b83565b610975611b8d565b61099f7fa49807205ce4d355092ef5a8a18f56e8913cf4a201fbe287825b095693c217758861186c565b506109ea7f24a3818a7acb4b0eabcb40e14b621200302d36230167d1d515c4059076de54ec7fa49807205ce4d355092ef5a8a18f56e8913cf4a201fbe287825b095693c21775611b9f565b610a347f042f7f2d51a65221f2b78abd38eab9b584f9316e5208d5d8692a81b3af07af737fa49807205ce4d355092ef5a8a18f56e8913cf4a201fbe287825b095693c21775611b9f565b610a5e7f042f7f2d51a65221f2b78abd38eab9b584f9316e5208d5d8692a81b3af07af738761186c565b508315610abb5760008560000160086101000a81548160ff0219169083151502179055507fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d26001604051610ab291906127b3565b60405180910390a15b50505050505050565b60016020528060005260406000206000915054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b600080610b02611c0a565b90508060000160009054906101000a900460ff1691505090565b600080610b2883610558565b9050610b3381611c32565b915050919050565b7fa49807205ce4d355092ef5a8a18f56e8913cf4a201fbe287825b095693c2177581565b600080610b6a611844565b905080600001600085815260200190815260200160002060000160008473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060009054906101000a900460ff1691505092915050565b6000801b81565b60006020528060005260406000206000915054906101000a900460ff1681565b7f042f7f2d51a65221f2b78abd38eab9b584f9316e5208d5d8692a81b3af07af7381565b7f042f7f2d51a65221f2b78abd38eab9b584f9316e5208d5d8692a81b3af07af73610c4d81611830565b600073ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff1603610cbc576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610cb39061281a565b60405180910390fd5b600073ffffffffffffffffffffffffffffffffffffffff166001600087815260200190815260200160002060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614610d5e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610d5590612886565b60405180910390fd5b836001600087815260200190815260200160002060006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550600073ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610ed95781471015610e27576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610e1e90612918565b60405180910390fd5b60008473ffffffffffffffffffffffffffffffffffffffff1683604051610e4d90612969565b60006040518083038185875af1925050503d8060008114610e8a576040519150601f19603f3d011682016040523d82523d6000602084013e610e8f565b606091505b5050905080610ed3576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610eca906129ca565b60405180910390fd5b50611059565b818373ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b8152600401610f1391906124a4565b602060405180830381865afa158015610f30573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610f5491906129ff565b1015610f95576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610f8c90612a9e565b60405180910390fd5b60008373ffffffffffffffffffffffffffffffffffffffff1663a9059cbb86856040518363ffffffff1660e01b8152600401610fd2929190612abe565b6020604051808303816000875af1158015610ff1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906110159190612b13565b905080611057576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161104e90612b8c565b60405180910390fd5b505b8273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff16867f1eb86efc541e1d7f3b778424e9e44c5d71ac56d5cf12dcfc35ddb52d82e7c21d856040516110b79190612bac565b60405180910390a45050505050565b6110cf8261064b565b6110d881611830565b6110e28383611a59565b50505050565b7f24a3818a7acb4b0eabcb40e14b621200302d36230167d1d515c4059076de54ec81565b611114611c68565b600073ffffffffffffffffffffffffffffffffffffffff1683600001602081019061113f9190612bc7565b73ffffffffffffffffffffffffffffffffffffffff1603611195576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161118c90612c40565b60405180910390fd5b60008360400135116111dc576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016111d390612cac565b60405180910390fd5b3073ffffffffffffffffffffffffffffffffffffffff168360600160208101906112069190612bc7565b73ffffffffffffffffffffffffffffffffffffffff161461125c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161125390612d18565b60405180910390fd5b82608001354211156112a3576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161129a90612d84565b60405180910390fd5b60006112be848036038101906112b9919061232e565b610b1c565b905060008082815260200190815260200160002060009054906101000a900460ff1615611320576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161131790612df0565b60405180910390fd5b600160008083815260200190815260200160002060006101000a81548160ff021916908315150217905550600061139b8285858080601f016020809104026020016040519081016040528093929190818152602001838380828437600081840152601f19601f82011690508083019250505050505050611ca9565b90506113c77f24a3818a7acb4b0eabcb40e14b621200302d36230167d1d515c4059076de54ec82610b5f565b611406576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016113fd90612e5c565b60405180910390fd5b600073ffffffffffffffffffffffffffffffffffffffff168560200160208101906114319190612bc7565b73ffffffffffffffffffffffffffffffffffffffff160361155b578460400135471015611493576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161148a90612918565b60405180910390fd5b60008560000160208101906114a89190612bc7565b73ffffffffffffffffffffffffffffffffffffffff1686604001356040516114cf90612969565b60006040518083038185875af1925050503d806000811461150c576040519150601f19603f3d011682016040523d82523d6000602084013e611511565b606091505b5050905080611555576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161154c906129ca565b60405180910390fd5b50611719565b84604001358560200160208101906115739190612bc7565b73ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b81526004016115ab91906124a4565b602060405180830381865afa1580156115c8573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906115ec91906129ff565b101561162d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161162490612a9e565b60405180910390fd5b60008560200160208101906116429190612bc7565b73ffffffffffffffffffffffffffffffffffffffff1663a9059cbb8760000160208101906116709190612bc7565b88604001356040518363ffffffff1660e01b8152600401611692929190612abe565b6020604051808303816000875af11580156116b1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906116d59190612b13565b905080611717576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161170e90612b8c565b60405180910390fd5b505b3373ffffffffffffffffffffffffffffffffffffffff168560000160208101906117439190612bc7565b73ffffffffffffffffffffffffffffffffffffffff1686602001602081019061176c9190612bc7565b73ffffffffffffffffffffffffffffffffffffffff167fba4c44549948738f1f2f40d2649d7c0b03a90f682be8838c8cd312b7054f6e928860400135866040516117b7929190612e7c565b60405180910390a45050505050565b60007f01ffc9a7000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916149050919050565b6118418161183c611a51565b611cd5565b50565b60007f02dd7bc7dec4dceedda775e58dd541e08a116c6c53815c0bd028192f7b626800905090565b600080611877611844565b90506118838484610b5f565b61196157600181600001600086815260200190815260200160002060000160008573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060006101000a81548160ff0219169083151502179055506118fd611a51565b73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16857f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a46001915050611967565b60009150505b92915050565b611975611c68565b600061197f611c0a565b905060018160000160006101000a81548160ff0219169083151502179055507f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586119c7611a51565b6040516119d491906124a4565b60405180910390a150565b6119e7611d26565b60006119f1611c0a565b905060008160000160006101000a81548160ff0219169083151502179055507f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa611a39611a51565b604051611a4691906124a4565b60405180910390a150565b600033905090565b600080611a64611844565b9050611a708484610b5f565b15611b4f57600081600001600086815260200190815260200160002060000160008573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060006101000a81548160ff021916908315150217905550611aeb611a51565b73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16857ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b60405160405180910390a46001915050611b55565b60009150505b92915050565b60007ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00905090565b611b8b611d66565b565b611b95611d66565b611b9d611da6565b565b6000611ba9611844565b90506000611bb68461064b565b905082826000016000868152602001908152602001600020600101819055508281857fbd79b86ffe0ab8e8776151514217cd7cacd52c909f66475c3af44e129f0b00ff60405160405180910390a450505050565b60007fcd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300905090565b60007f19457468657265756d205369676e6564204d6573736167653a0a33320000000060005281601c52603c6000209050919050565b611c70610af7565b15611ca7576040517fd93c066500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b600080600080611cb98686611dda565b925092509250611cc98282611e36565b82935050505092915050565b611cdf8282610b5f565b611d225780826040517fe2517d3f000000000000000000000000000000000000000000000000000000008152600401611d19929190612ea5565b60405180910390fd5b5050565b611d2e610af7565b611d64576040517f8dfc202b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b611d6e611f9a565b611da4576040517fd7e6bcf800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b611dae611d66565b6000611db8611c0a565b905060008160000160006101000a81548160ff02191690831515021790555050565b60008060006041845103611e1f5760008060006020870151925060408701519150606087015160001a9050611e1188828585611fba565b955095509550505050611e2f565b60006002855160001b9250925092505b9250925092565b60006003811115611e4a57611e49612ece565b5b826003811115611e5d57611e5c612ece565b5b0315611f965760016003811115611e7757611e76612ece565b5b826003811115611e8a57611e89612ece565b5b03611ec1576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60026003811115611ed557611ed4612ece565b5b826003811115611ee857611ee7612ece565b5b03611f2d578060001c6040517ffce698f7000000000000000000000000000000000000000000000000000000008152600401611f249190612bac565b60405180910390fd5b600380811115611f4057611f3f612ece565b5b826003811115611f5357611f52612ece565b5b03611f9557806040517fd78bce0c000000000000000000000000000000000000000000000000000000008152600401611f8c9190612374565b60405180910390fd5b5b5050565b6000611fa4611b5b565b60000160089054906101000a900460ff16905090565b60008060007f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08460001c1115611ffa5760006003859250925092506120a4565b60006001888888886040516000815260200160405260405161201f9493929190612f19565b6020604051602081039080840390855afa158015612041573d6000803e3d6000fd5b505050602060405103519050600073ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff160361209557600060016000801b935093509350506120a4565b8060008060001b935093509350505b9450945094915050565b6000604051905090565b600080fd5b600080fd5b60007fffffffff0000000000000000000000000000000000000000000000000000000082169050919050565b6120f7816120c2565b811461210257600080fd5b50565b600081359050612114816120ee565b92915050565b6000602082840312156121305761212f6120b8565b5b600061213e84828501612105565b91505092915050565b60008115159050919050565b61215c81612147565b82525050565b60006020820190506121776000830184612153565b92915050565b600080fd5b6000601f19601f8301169050919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b6121cb82612182565b810181811067ffffffffffffffff821117156121ea576121e9612193565b5b80604052505050565b60006121fd6120ae565b905061220982826121c2565b919050565b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b60006122398261220e565b9050919050565b6122498161222e565b811461225457600080fd5b50565b60008135905061226681612240565b92915050565b6000819050919050565b61227f8161226c565b811461228a57600080fd5b50565b60008135905061229c81612276565b92915050565b600060a082840312156122b8576122b761217d565b5b6122c260a06121f3565b905060006122d284828501612257565b60008301525060206122e684828501612257565b60208301525060406122fa8482850161228d565b604083015250606061230e84828501612257565b60608301525060806123228482850161228d565b60808301525092915050565b600060a08284031215612344576123436120b8565b5b6000612352848285016122a2565b91505092915050565b6000819050919050565b61236e8161235b565b82525050565b60006020820190506123896000830184612365565b92915050565b6123988161235b565b81146123a357600080fd5b50565b6000813590506123b58161238f565b92915050565b6000602082840312156123d1576123d06120b8565b5b60006123df848285016123a6565b91505092915050565b600080604083850312156123ff576123fe6120b8565b5b600061240d858286016123a6565b925050602061241e85828601612257565b9150509250929050565b6000806040838503121561243f5761243e6120b8565b5b600061244d85828601612257565b925050602061245e85828601612257565b9150509250929050565b60006020828403121561247e5761247d6120b8565b5b600061248c8482850161228d565b91505092915050565b61249e8161222e565b82525050565b60006020820190506124b96000830184612495565b92915050565b600080600080608085870312156124d9576124d86120b8565b5b60006124e78782880161228d565b94505060206124f887828801612257565b935050604061250987828801612257565b925050606061251a8782880161228d565b91505092959194509250565b600080fd5b600060a0828403121561254157612540612526565b5b81905092915050565b600080fd5b600080fd5b600080fd5b60008083601f84011261256f5761256e61254a565b5b8235905067ffffffffffffffff81111561258c5761258b61254f565b5b6020830191508360018202830111156125a8576125a7612554565b5b9250929050565b600080600060c084860312156125c8576125c76120b8565b5b60006125d68682870161252b565b93505060a084013567ffffffffffffffff8111156125f7576125f66120bd565b5b61260386828701612559565b92509250509250925092565b6126188161226c565b82525050565b600060a0820190506126336000830188612495565b6126406020830187612495565b61264d604083018661260f565b61265a6060830185612495565b612667608083018461260f565b9695505050505050565b600082825260208201905092915050565b7f496e76616c69642061646d696e00000000000000000000000000000000000000600082015250565b60006126b8600d83612671565b91506126c382612682565b602082019050919050565b600060208201905081810360008301526126e7816126ab565b9050919050565b7f496e76616c69642066756c66696c6c6d656e7441646d696e0000000000000000600082015250565b6000612724601883612671565b915061272f826126ee565b602082019050919050565b6000602082019050818103600083015261275381612717565b9050919050565b6000819050919050565b600067ffffffffffffffff82169050919050565b6000819050919050565b600061279d6127986127938461275a565b612778565b612764565b9050919050565b6127ad81612782565b82525050565b60006020820190506127c860008301846127a4565b92915050565b7f496e76616c696420726563697069656e74000000000000000000000000000000600082015250565b6000612804601183612671565b915061280f826127ce565b602082019050919050565b60006020820190508181036000830152612833816127f7565b9050919050565b7f416c72656164792070726f636573736564000000000000000000000000000000600082015250565b6000612870601183612671565b915061287b8261283a565b602082019050919050565b6000602082019050818103600083015261289f81612863565b9050919050565b7f696e73756666696369656e742062616c616e636520666f72206e61746976652060008201527f7769746864726177616c00000000000000000000000000000000000000000000602082015250565b6000612902602a83612671565b915061290d826128a6565b604082019050919050565b60006020820190508181036000830152612931816128f5565b9050919050565b600081905092915050565b50565b6000612953600083612938565b915061295e82612943565b600082019050919050565b600061297482612946565b9150819050919050565b7f6e617469766520746f6b656e207472616e73666572206661696c656400000000600082015250565b60006129b4601c83612671565b91506129bf8261297e565b602082019050919050565b600060208201905081810360008301526129e3816129a7565b9050919050565b6000815190506129f981612276565b92915050565b600060208284031215612a1557612a146120b8565b5b6000612a23848285016129ea565b91505092915050565b7f696e73756666696369656e742062616c616e636520666f72206572633230207760008201527f69746864726177616c0000000000000000000000000000000000000000000000602082015250565b6000612a88602983612671565b9150612a9382612a2c565b604082019050919050565b60006020820190508181036000830152612ab781612a7b565b9050919050565b6000604082019050612ad36000830185612495565b612ae0602083018461260f565b9392505050565b612af081612147565b8114612afb57600080fd5b50565b600081519050612b0d81612ae7565b92915050565b600060208284031215612b2957612b286120b8565b5b6000612b3784828501612afe565b91505092915050565b7f657263323020746f6b656e207472616e73666572206661696c65640000000000600082015250565b6000612b76601b83612671565b9150612b8182612b40565b602082019050919050565b60006020820190508181036000830152612ba581612b69565b9050919050565b6000602082019050612bc1600083018461260f565b92915050565b600060208284031215612bdd57612bdc6120b8565b5b6000612beb84828501612257565b91505092915050565b7f696e76616c696420726563697069656e74000000000000000000000000000000600082015250565b6000612c2a601183612671565b9150612c3582612bf4565b602082019050919050565b60006020820190508181036000830152612c5981612c1d565b9050919050565b7f696e76616c696420616d6f756e74000000000000000000000000000000000000600082015250565b6000612c96600e83612671565b9150612ca182612c60565b602082019050919050565b60006020820190508181036000830152612cc581612c89565b9050919050565b7f696e76616c696420726577617264732061646472657373000000000000000000600082015250565b6000612d02601783612671565b9150612d0d82612ccc565b602082019050919050565b60006020820190508181036000830152612d3181612cf5565b9050919050565b7f7065726d69742068617320657870697265640000000000000000000000000000600082015250565b6000612d6e601283612671565b9150612d7982612d38565b602082019050919050565b60006020820190508181036000830152612d9d81612d61565b9050919050565b7f7065726d697420616c726561647920636c61696d656400000000000000000000600082015250565b6000612dda601683612671565b9150612de582612da4565b602082019050919050565b60006020820190508181036000830152612e0981612dcd565b9050919050565b7f696e76616c6964207369676e6174757265000000000000000000000000000000600082015250565b6000612e46601183612671565b9150612e5182612e10565b602082019050919050565b60006020820190508181036000830152612e7581612e39565b9050919050565b6000604082019050612e91600083018561260f565b612e9e6020830184612365565b9392505050565b6000604082019050612eba6000830185612495565b612ec76020830184612365565b9392505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b600060ff82169050919050565b612f1381612efd565b82525050565b6000608082019050612f2e6000830187612365565b612f3b6020830186612f0a565b612f486040830185612365565b612f556060830184612365565b9594505050505056fea2646970667358221220deaece62fce136feb8eae3a538b5d974efbdd019ce550f7debe642782638be5264736f6c634300081b0033
Deployed Bytecode
0x6080604052600436106101235760003560e01c806363eda212116100a0578063cd6487a211610064578063cd6487a21461040d578063cd6cb51d14610438578063d547741f14610461578063e1f4a17d1461048a578063f8109888146104b557610124565b806363eda2121461030057806375b238fc1461033d57806391d1485414610368578063a217fddf146103a5578063a446a62b146103d057610124565b806336566f06116100e757806336566f061461022f57806336568abe14610246578063485cc9551461026f5780635a08cae5146102985780635c975abb146102d557610124565b806301ffc9a7146101265780630640961c146101635780630774614b146101a0578063248a9ca3146101c95780632f2ff15d1461020657610124565b5b005b34801561013257600080fd5b5061014d6004803603810190610148919061211a565b6104de565b60405161015a9190612162565b60405180910390f35b34801561016f57600080fd5b5061018a6004803603810190610185919061232e565b610558565b6040516101979190612374565b60405180910390f35b3480156101ac57600080fd5b506101c760048036038101906101c291906123bb565b6105a4565b005b3480156101d557600080fd5b506101f060048036038101906101eb91906123bb565b61064b565b6040516101fd9190612374565b60405180910390f35b34801561021257600080fd5b5061022d600480360381019061022891906123e8565b610679565b005b34801561023b57600080fd5b5061024461069b565b005b34801561025257600080fd5b5061026d600480360381019061026891906123e8565b6106ea565b005b34801561027b57600080fd5b5061029660048036038101906102919190612428565b610765565b005b3480156102a457600080fd5b506102bf60048036038101906102ba9190612468565b610ac4565b6040516102cc91906124a4565b60405180910390f35b3480156102e157600080fd5b506102ea610af7565b6040516102f79190612162565b60405180910390f35b34801561030c57600080fd5b506103276004803603810190610322919061232e565b610b1c565b6040516103349190612374565b60405180910390f35b34801561034957600080fd5b50610352610b3b565b60405161035f9190612374565b60405180910390f35b34801561037457600080fd5b5061038f600480360381019061038a91906123e8565b610b5f565b60405161039c9190612162565b60405180910390f35b3480156103b157600080fd5b506103ba610bd8565b6040516103c79190612374565b60405180910390f35b3480156103dc57600080fd5b506103f760048036038101906103f291906123bb565b610bdf565b6040516104049190612162565b60405180910390f35b34801561041957600080fd5b50610422610bff565b60405161042f9190612374565b60405180910390f35b34801561044457600080fd5b5061045f600480360381019061045a91906124bf565b610c23565b005b34801561046d57600080fd5b50610488600480360381019061048391906123e8565b6110c6565b005b34801561049657600080fd5b5061049f6110e8565b6040516104ac9190612374565b60405180910390f35b3480156104c157600080fd5b506104dc60048036038101906104d791906125af565b61110c565b005b60007f7965db0b000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff191614806105515750610550826117c6565b5b9050919050565b60008160000151826020015183604001518460600151856080015160405160200161058795949392919061261e565b604051602081830303815290604052805190602001209050919050565b7fa49807205ce4d355092ef5a8a18f56e8913cf4a201fbe287825b095693c217756105ce81611830565b600160008084815260200190815260200160002060006101000a81548160ff0219169083151502179055503373ffffffffffffffffffffffffffffffffffffffff167fb9754bb28c92fc3e1623ffea877b1f1ca6ca1fd490ecc6160ba73aee9fca1a368360405161063f9190612374565b60405180910390a25050565b600080610656611844565b905080600001600084815260200190815260200160002060010154915050919050565b6106828261064b565b61068b81611830565b610695838361186c565b50505050565b7fa49807205ce4d355092ef5a8a18f56e8913cf4a201fbe287825b095693c217756106c581611830565b6106cd610af7565b6106de576106d961196d565b6106e7565b6106e66119df565b5b50565b6106f2611a51565b73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614610756576040517f6697b23200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6107608282611a59565b505050565b600061076f611b5b565b905060008160000160089054906101000a900460ff1615905060008260000160009054906101000a900467ffffffffffffffff1690506000808267ffffffffffffffff161480156107bd5750825b9050600060018367ffffffffffffffff161480156107f2575060003073ffffffffffffffffffffffffffffffffffffffff163b145b905081158015610800575080155b15610837576040517ff92ee8a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60018560000160006101000a81548167ffffffffffffffff021916908367ffffffffffffffff16021790555083156108875760018560000160086101000a81548160ff0219169083151502179055505b600073ffffffffffffffffffffffffffffffffffffffff168773ffffffffffffffffffffffffffffffffffffffff16036108f6576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016108ed906126ce565b60405180910390fd5b600073ffffffffffffffffffffffffffffffffffffffff168673ffffffffffffffffffffffffffffffffffffffff1603610965576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161095c9061273a565b60405180910390fd5b61096d611b83565b610975611b8d565b61099f7fa49807205ce4d355092ef5a8a18f56e8913cf4a201fbe287825b095693c217758861186c565b506109ea7f24a3818a7acb4b0eabcb40e14b621200302d36230167d1d515c4059076de54ec7fa49807205ce4d355092ef5a8a18f56e8913cf4a201fbe287825b095693c21775611b9f565b610a347f042f7f2d51a65221f2b78abd38eab9b584f9316e5208d5d8692a81b3af07af737fa49807205ce4d355092ef5a8a18f56e8913cf4a201fbe287825b095693c21775611b9f565b610a5e7f042f7f2d51a65221f2b78abd38eab9b584f9316e5208d5d8692a81b3af07af738761186c565b508315610abb5760008560000160086101000a81548160ff0219169083151502179055507fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d26001604051610ab291906127b3565b60405180910390a15b50505050505050565b60016020528060005260406000206000915054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b600080610b02611c0a565b90508060000160009054906101000a900460ff1691505090565b600080610b2883610558565b9050610b3381611c32565b915050919050565b7fa49807205ce4d355092ef5a8a18f56e8913cf4a201fbe287825b095693c2177581565b600080610b6a611844565b905080600001600085815260200190815260200160002060000160008473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060009054906101000a900460ff1691505092915050565b6000801b81565b60006020528060005260406000206000915054906101000a900460ff1681565b7f042f7f2d51a65221f2b78abd38eab9b584f9316e5208d5d8692a81b3af07af7381565b7f042f7f2d51a65221f2b78abd38eab9b584f9316e5208d5d8692a81b3af07af73610c4d81611830565b600073ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff1603610cbc576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610cb39061281a565b60405180910390fd5b600073ffffffffffffffffffffffffffffffffffffffff166001600087815260200190815260200160002060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614610d5e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610d5590612886565b60405180910390fd5b836001600087815260200190815260200160002060006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550600073ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610ed95781471015610e27576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610e1e90612918565b60405180910390fd5b60008473ffffffffffffffffffffffffffffffffffffffff1683604051610e4d90612969565b60006040518083038185875af1925050503d8060008114610e8a576040519150601f19603f3d011682016040523d82523d6000602084013e610e8f565b606091505b5050905080610ed3576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610eca906129ca565b60405180910390fd5b50611059565b818373ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b8152600401610f1391906124a4565b602060405180830381865afa158015610f30573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610f5491906129ff565b1015610f95576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610f8c90612a9e565b60405180910390fd5b60008373ffffffffffffffffffffffffffffffffffffffff1663a9059cbb86856040518363ffffffff1660e01b8152600401610fd2929190612abe565b6020604051808303816000875af1158015610ff1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906110159190612b13565b905080611057576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161104e90612b8c565b60405180910390fd5b505b8273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff16867f1eb86efc541e1d7f3b778424e9e44c5d71ac56d5cf12dcfc35ddb52d82e7c21d856040516110b79190612bac565b60405180910390a45050505050565b6110cf8261064b565b6110d881611830565b6110e28383611a59565b50505050565b7f24a3818a7acb4b0eabcb40e14b621200302d36230167d1d515c4059076de54ec81565b611114611c68565b600073ffffffffffffffffffffffffffffffffffffffff1683600001602081019061113f9190612bc7565b73ffffffffffffffffffffffffffffffffffffffff1603611195576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161118c90612c40565b60405180910390fd5b60008360400135116111dc576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016111d390612cac565b60405180910390fd5b3073ffffffffffffffffffffffffffffffffffffffff168360600160208101906112069190612bc7565b73ffffffffffffffffffffffffffffffffffffffff161461125c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161125390612d18565b60405180910390fd5b82608001354211156112a3576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161129a90612d84565b60405180910390fd5b60006112be848036038101906112b9919061232e565b610b1c565b905060008082815260200190815260200160002060009054906101000a900460ff1615611320576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161131790612df0565b60405180910390fd5b600160008083815260200190815260200160002060006101000a81548160ff021916908315150217905550600061139b8285858080601f016020809104026020016040519081016040528093929190818152602001838380828437600081840152601f19601f82011690508083019250505050505050611ca9565b90506113c77f24a3818a7acb4b0eabcb40e14b621200302d36230167d1d515c4059076de54ec82610b5f565b611406576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016113fd90612e5c565b60405180910390fd5b600073ffffffffffffffffffffffffffffffffffffffff168560200160208101906114319190612bc7565b73ffffffffffffffffffffffffffffffffffffffff160361155b578460400135471015611493576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161148a90612918565b60405180910390fd5b60008560000160208101906114a89190612bc7565b73ffffffffffffffffffffffffffffffffffffffff1686604001356040516114cf90612969565b60006040518083038185875af1925050503d806000811461150c576040519150601f19603f3d011682016040523d82523d6000602084013e611511565b606091505b5050905080611555576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161154c906129ca565b60405180910390fd5b50611719565b84604001358560200160208101906115739190612bc7565b73ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b81526004016115ab91906124a4565b602060405180830381865afa1580156115c8573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906115ec91906129ff565b101561162d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161162490612a9e565b60405180910390fd5b60008560200160208101906116429190612bc7565b73ffffffffffffffffffffffffffffffffffffffff1663a9059cbb8760000160208101906116709190612bc7565b88604001356040518363ffffffff1660e01b8152600401611692929190612abe565b6020604051808303816000875af11580156116b1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906116d59190612b13565b905080611717576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161170e90612b8c565b60405180910390fd5b505b3373ffffffffffffffffffffffffffffffffffffffff168560000160208101906117439190612bc7565b73ffffffffffffffffffffffffffffffffffffffff1686602001602081019061176c9190612bc7565b73ffffffffffffffffffffffffffffffffffffffff167fba4c44549948738f1f2f40d2649d7c0b03a90f682be8838c8cd312b7054f6e928860400135866040516117b7929190612e7c565b60405180910390a45050505050565b60007f01ffc9a7000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916149050919050565b6118418161183c611a51565b611cd5565b50565b60007f02dd7bc7dec4dceedda775e58dd541e08a116c6c53815c0bd028192f7b626800905090565b600080611877611844565b90506118838484610b5f565b61196157600181600001600086815260200190815260200160002060000160008573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060006101000a81548160ff0219169083151502179055506118fd611a51565b73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16857f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a46001915050611967565b60009150505b92915050565b611975611c68565b600061197f611c0a565b905060018160000160006101000a81548160ff0219169083151502179055507f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586119c7611a51565b6040516119d491906124a4565b60405180910390a150565b6119e7611d26565b60006119f1611c0a565b905060008160000160006101000a81548160ff0219169083151502179055507f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa611a39611a51565b604051611a4691906124a4565b60405180910390a150565b600033905090565b600080611a64611844565b9050611a708484610b5f565b15611b4f57600081600001600086815260200190815260200160002060000160008573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060006101000a81548160ff021916908315150217905550611aeb611a51565b73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16857ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b60405160405180910390a46001915050611b55565b60009150505b92915050565b60007ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00905090565b611b8b611d66565b565b611b95611d66565b611b9d611da6565b565b6000611ba9611844565b90506000611bb68461064b565b905082826000016000868152602001908152602001600020600101819055508281857fbd79b86ffe0ab8e8776151514217cd7cacd52c909f66475c3af44e129f0b00ff60405160405180910390a450505050565b60007fcd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300905090565b60007f19457468657265756d205369676e6564204d6573736167653a0a33320000000060005281601c52603c6000209050919050565b611c70610af7565b15611ca7576040517fd93c066500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b600080600080611cb98686611dda565b925092509250611cc98282611e36565b82935050505092915050565b611cdf8282610b5f565b611d225780826040517fe2517d3f000000000000000000000000000000000000000000000000000000008152600401611d19929190612ea5565b60405180910390fd5b5050565b611d2e610af7565b611d64576040517f8dfc202b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b611d6e611f9a565b611da4576040517fd7e6bcf800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b611dae611d66565b6000611db8611c0a565b905060008160000160006101000a81548160ff02191690831515021790555050565b60008060006041845103611e1f5760008060006020870151925060408701519150606087015160001a9050611e1188828585611fba565b955095509550505050611e2f565b60006002855160001b9250925092505b9250925092565b60006003811115611e4a57611e49612ece565b5b826003811115611e5d57611e5c612ece565b5b0315611f965760016003811115611e7757611e76612ece565b5b826003811115611e8a57611e89612ece565b5b03611ec1576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60026003811115611ed557611ed4612ece565b5b826003811115611ee857611ee7612ece565b5b03611f2d578060001c6040517ffce698f7000000000000000000000000000000000000000000000000000000008152600401611f249190612bac565b60405180910390fd5b600380811115611f4057611f3f612ece565b5b826003811115611f5357611f52612ece565b5b03611f9557806040517fd78bce0c000000000000000000000000000000000000000000000000000000008152600401611f8c9190612374565b60405180910390fd5b5b5050565b6000611fa4611b5b565b60000160089054906101000a900460ff16905090565b60008060007f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08460001c1115611ffa5760006003859250925092506120a4565b60006001888888886040516000815260200160405260405161201f9493929190612f19565b6020604051602081039080840390855afa158015612041573d6000803e3d6000fd5b505050602060405103519050600073ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff160361209557600060016000801b935093509350506120a4565b8060008060001b935093509350505b9450945094915050565b6000604051905090565b600080fd5b600080fd5b60007fffffffff0000000000000000000000000000000000000000000000000000000082169050919050565b6120f7816120c2565b811461210257600080fd5b50565b600081359050612114816120ee565b92915050565b6000602082840312156121305761212f6120b8565b5b600061213e84828501612105565b91505092915050565b60008115159050919050565b61215c81612147565b82525050565b60006020820190506121776000830184612153565b92915050565b600080fd5b6000601f19601f8301169050919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b6121cb82612182565b810181811067ffffffffffffffff821117156121ea576121e9612193565b5b80604052505050565b60006121fd6120ae565b905061220982826121c2565b919050565b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b60006122398261220e565b9050919050565b6122498161222e565b811461225457600080fd5b50565b60008135905061226681612240565b92915050565b6000819050919050565b61227f8161226c565b811461228a57600080fd5b50565b60008135905061229c81612276565b92915050565b600060a082840312156122b8576122b761217d565b5b6122c260a06121f3565b905060006122d284828501612257565b60008301525060206122e684828501612257565b60208301525060406122fa8482850161228d565b604083015250606061230e84828501612257565b60608301525060806123228482850161228d565b60808301525092915050565b600060a08284031215612344576123436120b8565b5b6000612352848285016122a2565b91505092915050565b6000819050919050565b61236e8161235b565b82525050565b60006020820190506123896000830184612365565b92915050565b6123988161235b565b81146123a357600080fd5b50565b6000813590506123b58161238f565b92915050565b6000602082840312156123d1576123d06120b8565b5b60006123df848285016123a6565b91505092915050565b600080604083850312156123ff576123fe6120b8565b5b600061240d858286016123a6565b925050602061241e85828601612257565b9150509250929050565b6000806040838503121561243f5761243e6120b8565b5b600061244d85828601612257565b925050602061245e85828601612257565b9150509250929050565b60006020828403121561247e5761247d6120b8565b5b600061248c8482850161228d565b91505092915050565b61249e8161222e565b82525050565b60006020820190506124b96000830184612495565b92915050565b600080600080608085870312156124d9576124d86120b8565b5b60006124e78782880161228d565b94505060206124f887828801612257565b935050604061250987828801612257565b925050606061251a8782880161228d565b91505092959194509250565b600080fd5b600060a0828403121561254157612540612526565b5b81905092915050565b600080fd5b600080fd5b600080fd5b60008083601f84011261256f5761256e61254a565b5b8235905067ffffffffffffffff81111561258c5761258b61254f565b5b6020830191508360018202830111156125a8576125a7612554565b5b9250929050565b600080600060c084860312156125c8576125c76120b8565b5b60006125d68682870161252b565b93505060a084013567ffffffffffffffff8111156125f7576125f66120bd565b5b61260386828701612559565b92509250509250925092565b6126188161226c565b82525050565b600060a0820190506126336000830188612495565b6126406020830187612495565b61264d604083018661260f565b61265a6060830185612495565b612667608083018461260f565b9695505050505050565b600082825260208201905092915050565b7f496e76616c69642061646d696e00000000000000000000000000000000000000600082015250565b60006126b8600d83612671565b91506126c382612682565b602082019050919050565b600060208201905081810360008301526126e7816126ab565b9050919050565b7f496e76616c69642066756c66696c6c6d656e7441646d696e0000000000000000600082015250565b6000612724601883612671565b915061272f826126ee565b602082019050919050565b6000602082019050818103600083015261275381612717565b9050919050565b6000819050919050565b600067ffffffffffffffff82169050919050565b6000819050919050565b600061279d6127986127938461275a565b612778565b612764565b9050919050565b6127ad81612782565b82525050565b60006020820190506127c860008301846127a4565b92915050565b7f496e76616c696420726563697069656e74000000000000000000000000000000600082015250565b6000612804601183612671565b915061280f826127ce565b602082019050919050565b60006020820190508181036000830152612833816127f7565b9050919050565b7f416c72656164792070726f636573736564000000000000000000000000000000600082015250565b6000612870601183612671565b915061287b8261283a565b602082019050919050565b6000602082019050818103600083015261289f81612863565b9050919050565b7f696e73756666696369656e742062616c616e636520666f72206e61746976652060008201527f7769746864726177616c00000000000000000000000000000000000000000000602082015250565b6000612902602a83612671565b915061290d826128a6565b604082019050919050565b60006020820190508181036000830152612931816128f5565b9050919050565b600081905092915050565b50565b6000612953600083612938565b915061295e82612943565b600082019050919050565b600061297482612946565b9150819050919050565b7f6e617469766520746f6b656e207472616e73666572206661696c656400000000600082015250565b60006129b4601c83612671565b91506129bf8261297e565b602082019050919050565b600060208201905081810360008301526129e3816129a7565b9050919050565b6000815190506129f981612276565b92915050565b600060208284031215612a1557612a146120b8565b5b6000612a23848285016129ea565b91505092915050565b7f696e73756666696369656e742062616c616e636520666f72206572633230207760008201527f69746864726177616c0000000000000000000000000000000000000000000000602082015250565b6000612a88602983612671565b9150612a9382612a2c565b604082019050919050565b60006020820190508181036000830152612ab781612a7b565b9050919050565b6000604082019050612ad36000830185612495565b612ae0602083018461260f565b9392505050565b612af081612147565b8114612afb57600080fd5b50565b600081519050612b0d81612ae7565b92915050565b600060208284031215612b2957612b286120b8565b5b6000612b3784828501612afe565b91505092915050565b7f657263323020746f6b656e207472616e73666572206661696c65640000000000600082015250565b6000612b76601b83612671565b9150612b8182612b40565b602082019050919050565b60006020820190508181036000830152612ba581612b69565b9050919050565b6000602082019050612bc1600083018461260f565b92915050565b600060208284031215612bdd57612bdc6120b8565b5b6000612beb84828501612257565b91505092915050565b7f696e76616c696420726563697069656e74000000000000000000000000000000600082015250565b6000612c2a601183612671565b9150612c3582612bf4565b602082019050919050565b60006020820190508181036000830152612c5981612c1d565b9050919050565b7f696e76616c696420616d6f756e74000000000000000000000000000000000000600082015250565b6000612c96600e83612671565b9150612ca182612c60565b602082019050919050565b60006020820190508181036000830152612cc581612c89565b9050919050565b7f696e76616c696420726577617264732061646472657373000000000000000000600082015250565b6000612d02601783612671565b9150612d0d82612ccc565b602082019050919050565b60006020820190508181036000830152612d3181612cf5565b9050919050565b7f7065726d69742068617320657870697265640000000000000000000000000000600082015250565b6000612d6e601283612671565b9150612d7982612d38565b602082019050919050565b60006020820190508181036000830152612d9d81612d61565b9050919050565b7f7065726d697420616c726561647920636c61696d656400000000000000000000600082015250565b6000612dda601683612671565b9150612de582612da4565b602082019050919050565b60006020820190508181036000830152612e0981612dcd565b9050919050565b7f696e76616c6964207369676e6174757265000000000000000000000000000000600082015250565b6000612e46601183612671565b9150612e5182612e10565b602082019050919050565b60006020820190508181036000830152612e7581612e39565b9050919050565b6000604082019050612e91600083018561260f565b612e9e6020830184612365565b9392505050565b6000604082019050612eba6000830185612495565b612ec76020830184612365565b9392505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b600060ff82169050919050565b612f1381612efd565b82525050565b6000608082019050612f2e6000830187612365565b612f3b6020830186612f0a565b612f486040830185612365565b612f556060830184612365565b9594505050505056fea2646970667358221220deaece62fce136feb8eae3a538b5d974efbdd019ce550f7debe642782638be5264736f6c634300081b0033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 34 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.